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Chapter 1

Cooperative Games

Bibliography

- [1] V. Dequiedt, J. Durieu, Ph. Solal. Théorie des jeux et applications. Economica
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1.1 Introduction

A game can be given in:

• normal form (matrix)

• extensive form (tree)

• characteristic form (function)

The characteristic form of a game summarizes the possible gains/losses/utilities
for a given group of players (called coalition), the group being bound by a co-
operation agreement. The details of the strategies to obtain these values are
ignored.

Notation:

• N = {1, . . . , n}: set of players

• S ⊆ N : coalition. N is called the grand coalition.

• u = (u1, . . . , un) ∈ R
N : outcome, i.e., utility vector for each player. We

denote by uS ∈ R
S the restriction of u to S.

1



2 CHAPTER 1. COOPERATIVE GAMES

Definition 1.1. A set of feasible utilities is a nonempty closed set US ⊆ R
S which

is comprehensive, i.e., it satisfies

uS ∈ US , u′
S 6 uS ⇒ u′

S ∈ US .

Definition 1.2. A game in characteristic form is a pair (N, V ) where N is the set

of players and V is a function from 2N to 2R
N

, S 7→ V (S) ⊆ R
S , with V (S) the

set of possible utilities for S when the players of S cooperate.

Example 1.1. Example with n = 3.

V (N)

V ({2, 3})

V ({1, 2})

V ({1, 3})

V ({2})

V ({3})

V ({1})

u2

u3

u1

An important particular case is when utilities are transferable between play-
ers in S. Supposing that after normalization utilities have the same unit for
each player, the general form of V (S) is a half-plane of the form:

V (S) = {uS ∈ R
S |

∑

i∈S

ui 6 v(S)}

with v(S) ∈ R, the maximal amount of utility the players of S can obtain and
freely share among them, by transfer between players called side payments.

Example 1.2. The preceding example with n = 3 becomes, with transferable
utilities:
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V (N)

V ({2, 3})

V ({1, 2})

V ({1, 3})

V ({2})

V ({3})

V ({1})

u2

u3

u1

Let us remark that in the case of transferable utilities, the game is com-
pletely characterized by the quantities v(S), S ⊆ N . This kind of game is called
game with transferable utilities under characteristic form, or TU-game for short, and
denoted by (N, v) with v : 2N → R, with v(∅) := 0.

The other games under characteristic form are called NTU (non-transferable
utilities).

1.2 Examples

1.2.1 The three cities

Consider three cities in an electricity network with connection costs as follows:

power plant

city 1

city 2

city 3

100

140

50

30

20

If the cities cooperate, they can save connection costs. Let N = {1, 2, 3} be the
set of the 3 cities. For a coalition S ⊆ N of cities, let c(S) be the minimal cost of
connection for the cities in S, and v(S) the benefit of cooperation

v(S) :=
∑

i∈S

c({i})− c(S)

We have
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S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
c(S) 100 140 130 150 130 150 150
v(S) 0 0 0 90 100 120 220

1.2.2 The glove game

Consider 3 players. Players 1 and 2 possess a right glove, and player 3 a left
glove. A pair of gloves has worth 1. The players must cooperate for generating
profit.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 0 0 0 1 1 1

1.2.3 Permutation games

Abel, Banach and Cantor have an appointment at the dentist on Monday, Tues-
day and Wednesday, respectively. However, these appointments are not com-
pletely satisfactory for them. Their preference expressed as a utility are:

Monday Tuesday Wednesday
Abel 2 4 8
Banach 10 5 2
Cantor 10 6 4

If they cooperate, they can exchange their appointments and arrive at a better
overall utility (expressed by v, to be compared with u, the initial total utility):

S {A} {B} {C} {A,B} {A,C} {B,C} N
v(S) 2 5 4 14 18 9 24
u(S) 2 5 4 7 6 9 11

1.2.4 Airport games

The problem is to compute airport taxes for planes. There are two types of cost:

• variable cost for landing operations

• fixed cost (e.g., construction of a new landing track, a new terminal, etc.)

Variable costs are directly assigned to landing planes. Fixed costs must be
shared among planes (depending on their type).

We consider m types of planes, with Nj the set of planes of type j, and
N =

⋃m

j=1 Nj . We define cj the cost of a landing track suitable for type j, and
c(S) is the cost of a landing track suitable for all planes in S ⊆ N :

c(S) = max{cj | S ∩Nj 6= ∅}, c(∅) = 0.

1.2.5 Bankruptcy games

Problem extracted from the Talmud, by Rabbi Ibn Ezra (1140):

Jacob died, and his 4 sons Reuben, Simon, Lévi and Judas produced each
of them a will saying that Jacob give respectively all his estate, half of it, a
third of it, and a fourth of it. His estate is valued to 120 units.
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A bankruptcy problem is a pair (E, d), where E ∈ R+ is the estate and d ∈ R
n
+

is the vector of debts. The associated bankruptcy game is (N, vE,d), with N =
{1, . . . , n} the set of claimants, and

vE,d(S) = max(0, E −
∑

j∈N\S

dj) (S ⊆ N).

Let us apply this to Jacob’s problem:

d1 = 120, d2 = 60, d3 = 40, d4 = 30

hence (omitting commas and braces, i.e., writing 123 instead of {1, 2, 3}):

v(N) = 120

v(1) = v(2) = v(3) = v(4) = 0

v(12) = 50, v(13) = 30, v(14) = 20, v(23) = v(24) = v(34) = 0

v(123) = 90, v(124) = 80, v(134) = 60, v(234) = 0.

1.3 Cooperative TU-games

Remark: Cooperative games are also called coalitional games.

1.3.1 Definitions

We set G = (N, v).

Definition 1.3. (i) A game (N, v) is superadditive if

v(S ∪ T ) > v(S) + v(T ) (S, T disjoint)

It is subadditive if the reverse inequality holds.

(ii) A game (N, v) is convex if

v(S ∪ T ) + v(S ∩ T ) > v(S) + v(T ) (S, T ∈ 2N )

It is concave if the reverse inequality holds.

Some remarks:

(i) Superadditivity is a natural property if v is a profit, a benefit or a utility
(cooperation produces more profit). Subadditivity is natural if v is a cost.

(ii) A game which is both superadditive and subadditive is called additive.
Note that a game is additive iff it is both convex and concave.

(iii) Convexity implies superadditivity: it is a stronger property.

(iv) An equivalent definition of convexity is:

v(S∪{i})−v(S 6 v(T ∪{i})−v(T ), (i ∈ N)(S ⊆ T ⊆ N \{i}). (1.1)

Interpretation of (1.1): the marginal contribution of i is increasing with
the size of the coalition.
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Exercise 1.1. Prove the equivalence of (1.1) with convexity.

Definition 1.4. (i) A game (N, v) is a constant sum game if

v(S) + v(N \ S) = v(N) (S ∈ 2N ).

(ii) A game (N, v) is inessential if it is additive:

v(S) =
∑

i∈S

v({i}) (S ∈ 2N ).

An inessential game has no interest since if every player i claims a payment
at least equal to v({i}), then the only possible payment is xi = v({i}) for all
i ∈ N .

Clearly, an additive game is equivalent to a vector x ∈ R
N , hence the nota-

tion
x(S) :=

∑

i∈S

xi

for any S ⊆ N (by convention, x(∅) = 0) which will be very often used.

Definition 1.5. Two games (N, v) and (N,w) are strategically equivalent if there
exists α > 0, β ∈ R

N such that

w(S) = αv(S) + β(S)
︸ ︷︷ ︸

∑
i∈S βi

When v, w are two strategically equivalent games, w can be deduced from
v by a change of unit (α) and different initial endowments (β) to the players.

Definition 1.6. (i) A game (N, v) is zero-normalized if v({i}) = 0 for all i ∈ N .

(ii) A game (N, v) is monotone if S ⊆ T implies v(S) 6 v(T ).

(iii) A game (N, v) is symmetric if for all permutation π on N , we have v(π(S)) =
v(S) for all S ∈ 2N (equivalently: if v(S) = v(T ) whenever |S| = |T |, for
all S, T ∈ 2N ).

Exercise 1.2. (i) Prove that any game (N, v) is strategically equivalent to a
zero-normalized game.

(ii) Prove that any game (N, v) is strategically equivalent to a monotone game.

1.3.2 Cost allocation games

Let c : 2N → R be a cost function on N (set of clients), where c(S) is the minimal
cost for serving the clients in S ⊆ N . To (N, c) we associate a TU game (N, v)
representing the realized saving:

v(S) =
∑

i∈S

c({i})− c(S) (S ∈ 2N).

(N, c) is subadditive (resp., concave) iff (N, v) is superadditive (resp., convex)
(why?).
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Examples of cost allocation games are the three cities game, the airport
game, and the minimal cost spanning tree game (general form of the 3 cities
game), presented below.

A minimal cost spanning tree game is a pair (N, c) where N is a set of clients to
be served by a central node denoted by 0 (power plant, water tower, etc.). We
put N∗ = N ∪ {0} and consider the complete graph on N∗, with cost cij on the
link between i and j. For every subset S ⊆ N , we define c(S) to be the minimal
cost of all spanning trees over S ∪ {0}, where the cost of a tree is defined as the
sum of the costs of all links in the tree.

Example 1.3. Consider N = {1, 2, 3} and costs indicated on the graph below.

0 1

2

3

20

40

30

20

20

10

Then

c(1) = 20, c(3) = 30, c(123) = 50, c(S) = 40 otherwise.

1.3.3 Simple games

Definition 1.7. A simple game is a pair (N,W) where W ⊆ 2N is the set of
winning coalitions, satisfying

(i) N ∈ W

(ii) ∅ 6∈ W

(iii) S ⊆ T , S ∈ W imply T ∈ W .

Equivalently, a simple game g = (N,W) can be represented by a pair G =
(N, v), where v : 2N → {0, 1} is the associated coalitional game, defined by

v(S) = 1 ⇔ S ∈ W .

Note that a simple game is monotone (why?). Simple games are typically ap-
plied to votes in a committee N . Winning coalitions are those which have the
decision power: every voter votes ’yes’ or ’no’, and the final decision is ’yes’ iff
S = {voters voting ’yes’} ∈ W .

Definition 1.8. A winning coalition is minimal if every proper subset of it is not
winning. We denote by

Wm = {S ∈ W | T ⊂ S ⇒ T 6∈ W}

the set of minimal winning coalitions.
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Remarks:

(i) Wm completely determines the simple game.

(ii) Wm is an antichain in the Boolean lattice (2N ,⊆). Conversely, any an-
tichain, except {∅}, determines a simple game. It follows that the number
of simple games is the number of antichains on 2N minus 1. The number
of antichains of 2N is the Dedekind1 number M(n), which is known only
till n = 8 (see the table below).

n M(n)
0 2
1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788

Table 1.1: The Dedekind numbers M(n) for 0 6 n 6 8

Definition 1.9. Let g = (N,W) be a simple game. The game is

(i) proper if S ∈ W ⇒ N \ S 6∈ W

(ii) strong if S 6∈ W ⇔ N \ S ∈ W

(iii) weak if V =
⋂

S∈W 6= ∅. The members of V are the veto players.

(iv) dictatorial if there is exactly one veto player.

Exercise 1.3. Prove that, if g is a simple game with G the associated coalitional
game,

(i) G superadditive iff g proper

(ii) G constant sum iff g strong.

Definition 1.10. A simple game g = (N,W) is a weighted majority game if there
exist q > 0 (called the quota) and wi > 0, i ∈ N (called the weights) such that
S ∈ W iff w(S) > q.

Notation: g = (q;w1, . . . , wn).

Example 1.4. Let g = (39; 7, 7, 7, 7, 7, 1, . . . , 1
︸ ︷︷ ︸

10 times

). Then g is weak and the veto

players are the five first ones.

1Richard Dedekind (Braunschweig, 1831 – Braunschweig, 1916), German mathematician.
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Definition 1.11. Let T ⊆ N , T 6= ∅. The unanimity game centered on T is a game
defined:

uT (S) =

{

1, if S ⊇ T

0, otherwise.

Note that uT is a simple game with Wm = {T }. Dictatorial games are una-
nimity games u{i}, i ∈ N , and uT is a weak simple game whose veto players
are the players in T .
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Chapter 2

Solution concepts and the core

Throughout the chapter, we consider a TU-game (N, v).

2.1 Solution concept

Supposing that the grand coalition N forms, it remains to solve the problem of
sharing the benefit v(N) among the players in N , in a rational and equitable
way. A solution (of the game) is a systematic way of sharing v(N), for every
game (N, v).

Definition 2.1. We denote by X(N, v) = {x ∈ R
N | x(N) 6 v(N)} the set of

feasible payments of the game (N, v).

Definition 2.2. Let Γ be a set of games on N . A solution is a mapping

σ : Γ → 2X(N,v)

(N, v) 7→ σ(N, v) ⊆ X(N, v).

We distinguish between “point-type” solutions (σ(N, v) is a singleton) and
“set-type” solutions (σ(N, v) is a subset of feasible payments).

Definition 2.3. Let x ∈ X(N, v).

(i) x is efficient if x(N) = v(N).

(ii) x is individually rational if xi > v({i}) for all i ∈ N .

(iii) x is coalitionally rational if x(S) > v(S) for all S ⊆ N .

Based on these properties, we define

(i) The set of pre-imputations PI(N, v) = {x ∈ X(N, v) | x is efficient}

(ii) The set of imputations I(N, v) = {x ∈ PI(N, v) | x is individually rational}

If there is no ambiguity, we may use the notation X(v), P I(v), I(v) for sim-
plicity. Two remarks:

• If x is not efficient, a portion of v(N) is wasted.

11
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• If x is not individually rational, the players i such that xi < v({i}) have
no interest to participate to the game.

Proposition 2.1. (i) I(v) 6= ∅ iff v(N) >
∑

i∈N v({i})

(ii) I(v) = {(v({1}), . . . , v({n}))} if v additive.

(the proof is left to the reader as an exercise; is the converse of (ii) true?)

Definition 2.4. The core of (N, v) is the set

C(N, v) = {x ∈ R
N | x(S) > v(S), ∀S ⊆ N, x(N) = v(N)}

of coalitionally rational (pre-)imputations.

Note that if x is not coalitionally rational, coalitions S such that x(S) < v(S)
can leave the grand coalition N .

Example 2.1. We consider the 3 cities game:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 0 0 90 100 120 220

We have:

PI(v) = {x ∈ R
3 | x1 + x2 + x3 = 220}

I(v) = {x ∈ R
3
+ | x1 + x2 + x3 = 220}

C(v) = {x ∈ R
3
+ | x1 + x2 > 90

x1 + x3 > 100

x2 + x3 > 120

x1 + x2 + x3 = 220}

x1

x2

x3

220

220

220

I(v)

C(v)

(220, 0, 0) (0, 220, 0)

(0, 0, 220)

x1 + x2 > 90 ⇔ x3 6 130

x1 6 100 ⇔ x2 + x3 > 120

x1 + x3 > 100 ⇔ x2 6 120

For a game with 3 players, it is convenient to represent the core by the so-
called “triangle diagram”, provided the game is zero-normalized. The general
form is given below.
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(v(N), 0, 0) (0, v(N), 0)

(0, 0, v(N))

v({1, 2})

v({1, 3})
v({2, 3})

C(v)

x1 + x2 > v({1, 2})

x1 + x3 > v({1, 3})

x2 + x3 > v({2, 3})

Generally speaking, the core is bounded convex closed polyhedron, possibly
empty, of dimension at most n− 1. Therefore, it is either of infinite cardinality,
or reduced to a singleton, or empty.

2.2 Domination and stable sets

Definition 2.5. (Von Neumann and Morgenstern, 1944) Let (N, v) be a game,
and y, z ∈ I(N, v), S ⊆ N , S 6= ∅. We say that y dominates z via coalition S,
denoted by y domSz , if

(i) yi > zi for all i ∈ S

(ii) y(S) 6 v(S).

y dominates z, denoted by y dom z, if there exists a nonempty set S ⊆ N such
that y domS z.

Condition (i) can be interpreted as: the payment y is strictly better than z
for all members of S, and as for (ii): the payment y is affordable by cooperation
of the members of S.

We introduce

D(S) = {z ∈ I(v) | ∃y ∈ I(v), y domS z}

the set of payments dominated via S. Note that D(N) = ∅ and D({i}) = ∅,
∀i ∈ N (why?). Observe that if z ∈ D(S), then the players in S can raise a valid
objection against z.

Definition 2.6. An imputation x ∈ I(v) is undominated if x ∈ I(V )\
⋃

S∈2N ,S 6=∅

D(S).

Example 2.2. Let (N, v) with N = {1, 2, 3} and v defined by

v({1, 2}) = 2, v(N) = 1, v(S) = 0 otherwise.

Then D(S) = ∅ if S 6= {1, 2} and D({1, 2}) = {x ∈ I(v) | x3 > 0}. Therefore, x
is undominated if x3 = 0.



14 CHAPTER 2. SOLUTION CONCEPTS AND THE CORE

Exercise 2.1. Prove the above statements in the example.

Definition 2.7. The domination core of a game (N, v) is the set

DC(v) = I(v) \
⋃

S∈2N ,S 6=∅

D(S)

of undominated elements of I(v).

In Ex. 2.2, the core is empty, but the domination core is not empty (check
it!). A general statement about the core and domination core is the following.

Theorem 2.1. C(N, v) ⊆ DC(N, v) for every game (N, v).

Proof. Let x ∈ I(v) and x 6∈ DC(v). Then ∃y ∈ I(v), ∃S ∈ 2N such that
y domS x. Then v(S) > y(S) > x(S), which implies x 6∈ C(v).

Theorem 2.2. Let (N, v) be a game. We have DC(N, v) = C(N, v) if

v(N) > v(S) +
∑

i∈N\S

v({i}) (S ∈ 2N \ {∅}). (2.1)

Proof. It remains to show that DC(v) ⊆ C(v).
1. Let us show that x ∈ I(v) with x(S) < v(S) for a given S implies that

there exists y ∈ I(v) s.t. y domS x. Let us define y as follows:

• If i ∈ S, yi := xi +
1
|S|(v(S)− x(S)).

• If i 6∈ S, then yi = v({i}) + 1
|N\S|(v(N) − v(S)−∑

j∈N\S v({j}))

Then yi > v({i}) for all i ∈ N \ S by (2.1), and it can be checked that y ∈ I(v).
Moreover, y domS x.

2. Let x ∈ DC(v). Then there is no y ∈ I(v) s.t. y dom x. Consequently,
x(S) > v(S) for all S ∈ 2N \ {∅}, which proves x ∈ C(v).

Observe that if v is super-additive, then it satisfies (2.1). More importantly:

Corollary 2.1. Let (N, v) be a game. If C(N, v) 6= ∅, then DC(N, v) = C(N, v).

Proof. Suppose that C(N, v) 6= ∅ and pick x ∈ C(N, v). Then for any nonempty
S ∈ 2N ,

v(N) = x(N) = x(S) +
∑

i∈N\S

xi > v(S) +
∑

i∈N\S

v({i}).

Using Theorem 2.2, we deduce that DC(N, v) = C(Nv).

Definition 2.8. (Von Neumann and Morgenstern, 1944) Let (N, v) be a game
and A ⊆ I(N, v). A is a stable set if

• internal stability: If x, y ∈ A then x does not dominate y

• external stability: If x ∈ I(N, v) \A, then there exists y ∈ A which domi-
nates x.



2.3. THE CASE OF SIMPLE GAMES 15

Example 2.3. Consider N = {1, 2, 3} and v given by v(S) = 1 if |S| > 1,
v(S) = 0 otherwise. Then

A =
{(1

2
,
1

2
, 0
)

,
(1

2
, 0,

1

2

)

,
(

0,
1

2
,
1

2

)}

is a stable set. Indeed:

• internal stability: clear.

• external stability: an imputation has the form (x, y, 1 − x − y) with the
condition 0 6 x + y 6 1. Observe that at most one component of x is
strictly greater than 1/2, in which case the others are strictly less than
1/2. Suppose x1 > 1/2. Then x is dominated by (0, 12 ,

1
2 ) via {2, 3}.

Exercise 2.2. Consider the same game as in Example 2.3. Prove that

Bc := {x ∈ I(v) | x3 = c}

with c < 1
2 is a stable set.

Some remarks:

(i) There is no known necessary and sufficient condition on (N, v) for the
existence of a stable set.

(ii) As shown in Example 2.3 and Exercise 2.2, it may exist several stable sets,
which are not necessarily convex.

For these reasons, stable sets are not convenient as a solution concept.
Some other results (proof is left as an exercise)

Theorem 2.3. Let (N, v) be a simple game and S be a minimal winning coali-
tion. Consider

∆S = {x ∈ I(v) | xi = 0, ∀i 6∈ S}.
Then, if ∆S 6= ∅, it is a stable set.

Theorem 2.4. Let (N, v) be a game. Then:

(i) The domination core is included in any stable set.

(ii) If DC(v) is stable, then it is the unique stable set.

2.3 The case of simple games

It can be checked that (proof is left as an exercise)

(i) For a dictatorial game u{i},

I(u{i}) = {ei}, C(u{i}) = DC(u{i}) = {ei}

with ei := (0, . . . , 0, 1
︸︷︷︸

position i

, 0, . . . , 0).
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(ii) For a majority game with 3 players (W = {S : |S| > 1}),

C(v) = DC(v) = ∅

(iii) For a unanimity game uT :

C(uT ) = DC(uT ) = conv{ei, i ∈ T }.

Theorem 2.5. Let (N, v) be a simple game. Then

(i) C(v) = conv(ei | i ∈ veto(v)}, where veto(v) is the set of all veto players
of v.

(ii) If veto(v) = ∅ and {i ∈ N | v({i}) = 1} = {k}, then C(v) = ∅ and
DC(v) = {ek}. Otherwise, DC(v) = C(v).

Proof. 1. Let i ∈ veto(v) and S ⊆ N , S 6= ∅. Then ei ∈ C(v) since i ∈ S implies
ei(S) = 1 > v(S), otherwise ei(S) = 0 = v(S). Also ei(N) = 1 = v(N). This
proves ⊇ in (i).

2. Let us show ⊆ in (i). Let x ∈ C(v). It suffices to show that i 6∈ veto(v)
implies xi = 0. Suppose on the contrary xi > 0 for a non-veto player i. Take
S s.t. v(S) = 1 and i 6∈ S. Then x(S) = x(N) − x(N \ S) 6 1 − xi < 1, a
contradiction.

3. Let veto(v) = ∅ and let k be the only player in {i ∈ N | v({i}) = 1. Then
C(v) = ∅ by (i), but I(v) = {ek}. Hence DC(v) = {ek}.

If veto(v) = ∅ and {i ∈ N | v({i}) = 1} = ∅, then (2.1) is satisfied and thus
C(v) = DC(v).

If veto(v) = ∅ and |{i ∈ N | v({i}) = 1}| > 2, then I(v) = ∅ and thus
C(v) = DC(v) = ∅.

4. Suppose veto(v) 6= ∅. Then |{i ∈ N | v({i}) = 1}| 6 1. If {i ∈ N |
v({i}) = 1} = {k} then veto(v) = {k} and I(v) = {ek} = C(v) = DC(v).

If {i ∈ N | v({i}) = 1} = ∅, then (2.1) is satisfied and C(v) = DC(v).

2.4 Balanced games

Definition 2.9. A collection B of nonempty subsets of N is balanced if there
exist λS > 0, S ∈ B, such that

∑

S∈B

λS1S = 1N .

The λS are called the balancing weights.

Example 2.4. Take N = {1, 2, 3} and B = {{1, 2}, {1, 3}, {2, 3}}. Then B is a
balanced collection with balancing weights 1/2, 1/2, 1/2, respectively.

Some remarks:

(i) In general the balancing weights are not unique.
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(ii) Every partition of N is a balanced collection with weights equal to 1.

(iii) Interpretation: every player has one unit of time (or energy, etc.), which
he can distribute on the different coalitions to which he belongs to. The
distribution is balanced if the unit of time is entirely spent by each player.

Definition 2.10. A game (N, v) is balanced if for every balanced collection B it
holds

v(N) >
∑

S∈B

λSv(S).

Interpretation: the productivity v(N) of the grand coalition N during one unit
of time is greater than the total productivity when N is divided in smaller
groups.

Theorem 2.6. (Bondareva-Shapley, weak form) Let (N, v) be a game. Then
C(v) 6= ∅ iff v is balanced.

Proof. The proof is based on LP duality. Consider the LP problem (P):

Minimize z = x(N)

s.t. x(S) > v(S), S ∈ 2N \ {∅}.

Observe that (P) is bounded, and C(v) 6= ∅ iff (P) has an optimal solution with
z∗ = v(N). The dual program (D) of (P) reads:

Maximize w =
∑

S⊆N
S 6=∅

λSv(S)

s.t.
∑

S⊆N
S∋i

λS = 1, i ∈ N

λS > 0, S ∈ 2N \ {∅}

(D) has a feasible solution: λS = 0 for all S 6= N , and λN = 1, which yields
w = v(N).

Hence (D) has an optimal solution (as (P) is bounded), and so has (P) by the
Duality Theorem, with w∗ = z∗ ≥ v(N).

Therefore, C(v) 6= ∅ iff w∗ = v(N), which happens iff every feasible solu-
tion of (D) satisfies

∑

S⊆N
S 6=∅

λSv(S) 6 v(N),

i.e., v is balanced.

We say that a balanced collection is minimal if it does not contain a proper
subcollection that is balanced.

Lemma 2.1. A balanced collection is minimal if and only if it has a unique
system of balancing weights.
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Proof. ⇐) Suppose that B is not minimal. Then there exists B∗ ⊂ B that is
balanced with a system of balancing weights (λ∗

A)A∈B∗ . Then B has infinitely
many systems of balancing weights (λαA)A∈B , defined by

λαA =

{

αλA + (1 − α)λ∗
A, if A ∈ B∗

αλA, if A ∈ B \ B∗

with 0 < α 6 1.
⇒) Suppose that B has two different systems of balancing weights (λA)A∈B

and (λ′
A)A∈B. Then there exists A ∈ B such that λ′

A > λA, and we put

τ = min
{ λA
λ′
A − λA

| λ′
A > λA

}

.

We define the system of weights (λ̃A)A∈B:

λ̃A = (1 + τ)λA − τλ′
A (A ∈ B).

Then B∗ = {A ∈ B | λ̃A > 0} is a proper subcollection of B that is balanced

with system of balancing weights (λ̃A)A∈B∗ .

Exercise 2.3. Completion of the above proof:
1. In the ⇐) part, prove in detail that (λαA)A∈B is a system of balancing

weights for B.

2. In the ⇒) part, prove in detail that (λ̃A)A∈B∗ is a system of balancing
weights for B∗.

Let us consider the convex polytope

F =
{

λ ∈ R
2N\{∅} |

∑

∅ 6=A⊆N

λA1A = 1N , λA > 0, ∀∅ 6= A ⊆ N
}

.

Lemma 2.2. Let λ ∈ F and consider B = {A ⊆ N | λA > 0}. Then λ is an
extreme point of F if and only if B is a minimal balanced collection.

Proof. ⇒) If B is not minimal, then there exists B∗ ⊂ B that is balanced, with a
system of balancing weights (λ∗

A)A∈B∗ . We set

γA = (1− t)λA + tλ∗
A

γ′
A = (1 + t)λA − tλ∗

A

for all A ∈ B, letting λ∗
A = 0 if A 6∈ B∗, with t > 0 small enough to ensure

γA, γ
′
A > 0 for all A ∈ B. Then (γA)A∈B, (γ′)A∈B are systems of balancing

weights for B that are different, because γA < γ′
A for all A ∈ B \ B∗. Moreover,

λA = 1
2 (γA + γ′

A) for all A ∈ B, hence λ is not an extreme point.
⇐) Suppose that B is a minimal collection. If λ is not an extreme point,

there exist distinct γ, γ′ ∈ F such that

λA =
1

2
(γA + γ′

A) (A ∈ 2N \ {∅}).

Since γ, γ′ are nonnegative, λA = 0 implies γA = γ′
A = 0, therefore γ, γ′ define

distinct systems of balancing weights for collections C, C′, subcollections of B,
which by Lemma 2.1 contradicts the minimality of B.
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Corollary 2.2. A minimal balanced collection contains at most n sets.

Proof. From Lemma 2.2, B is minimal if and only if its unique system of bal-
ancing weight corresponds to an extreme point λ of F . Therefore λ is the
(unique) solution of a system of at least 2n − 1 equalities among the system
{∑A∋i λA = 1, i ∈ N ;λA > 0, A ∈ 2N \ {∅}}. Since the number of equalities in
this system is n+ 2n − 1− |B|, the above condition yields |B| 6 n.

Theorem 2.7 (Bondareva-Shapley theorem, sharp form). Let (N, v) be a game.
Its core is nonempty if and only if for any minimal balanced collection B with
system of balancing weights (λA)A∈B , we have v(N) >

∑

A∈B λAv(A). More-
over, none of the inequalities is redundant, except the one for B = {N}.

Proof. Every λ ∈ F is a convex combination of extreme points λ1, . . . , λk:

λ = α1λ
1 + · · ·+ αkλ

k.

For each λi, the inequality v(N) >
∑

A∈B λiAv(A) is valid, therefore

k∑

i=1

αiv(N)

︸ ︷︷ ︸

v(N)

>
∑

A∈B

v(A)

k∑

i=1

αiλ
i
A

︸ ︷︷ ︸

λA

.

Hence v is balanced, and by Theorem 2.6 its core is nonempty.
The converse statement is obvious.

[this part is optional] It remains to prove that none of the inequalities in
the system {∑A∈B λB

Av(A) 6 v(N),B minimal balanced ,B 6= {N}} is redun-
dant. From Farkas’ Lemma II, it suffices to prove that choosing any inequality
∑

A∈B∗ λB∗

A v(A) 6 v(N) in the system, a conic combination of the left members
of the remaining ones cannot give the left member of the chosen inequality. In
symbols, for all nonnegative coefficients γB, with B minimal balanced and dif-
ferent from B∗, the equalities

∑

B6=B∗,B∋S

γBλB
S =

{

λB∗

S , S ∈ B∗

0, otherwise

cannot hold simultaneously. Choose S ∈ B∗. Then there exists some minimal

balanced collection B̃ 6= B∗ such that B̃ ∋ S and γB̃ > 0 (otherwise 0 < λB∗

S =
∑

B6=B∗,B∋S γ
BλB

S is not possible). Because B̃ 6= B∗ and B̃ ⊂ B∗ is impossible by

minimality, there exists T ∈ B̃, T 6∈ B∗. Therefore

0 =
∑

B6=B∗,B∋T

γBλB
T > γB̃λB̃

T > 0,

a contradiction.

Example 2.5. We enumerate the minimal balanced collections forN = {1, 2, 3, 4}.
Every partition is obviously minimal, and there are 15 partitions of N . Apart
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these, the following are minimal balanced collections:

B = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, with λ =
(1

3
,
1

3
,
1

3
,
1

3

)

B = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}, with λ =
(1

3
,
1

3
,
1

3
,
2

3

)

B = {{1, 2}, {1, 3}, {2, 3}, {4}}, with λ =
(1

2
,
1

2
,
1

2
, 1
)

B = {{1, 2}, {1, 3, 4}, {2, 3, 4}}, with λ =
(1

2
,
1

2
,
1

2

)

B = {{1, 2, 3}, {1}, {3, 4}, {2, 4}} with λ =
(1

2
,
1

2
,
1

2
,
1

2

)

and those obtained by permutations.

2.5 The Weber set

Let σ : N → N be a permutation on N (order in which the players enter the
game). We denote by S(N) the set of permutations on N . There is a one-to-one
correspondence between each permutation σ and each maximal chain in (2N ,⊆)
(i.e., a sequence of n subsets ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = N ), defined by

S1 = {σ(1)}
S2 \ S1 = {σ(2)}

... =
...

Sn \ Sn−1 = {σ(n)},

that is, Si = {σ(1), . . . , σ(i)}. Next we associate to σ and v its marginal vector
mσ,v ∈ R

N (also denoted mσ if there is no fear of ambiguity) defined by

mσ,v

σ(i) = v(Si)− v(Si−1) (i ∈ N). (2.2)

It is easy to check that this is equivalent to

i∑

j=1

mσ,v

σ(j) = mσ,v(Si) = v(Si) (i ∈ N). (2.3)

Example 2.6. Let N = {1, 2, 3} and the permutation σ defined by σ(1) = 2,
σ(2) = 3, σ(3) = 1. Then

S1 = {2}, S2 = {2, 3}, S3 = {1, 2, 3}.

The marginal vector is

mσ
1 = v({1, 2, 3})− v({2, 3})

mσ
2 = v({2})

mσ
3 = v({2, 3})− v({2}).
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Definition 2.11. The Weber set of a game (N, v) is the convex hull of its marginal
vectors:

W (v) = conv{mσ | σ ∈ S(N)}.

Example 2.7. Let N = {1, 2, 3} and consider the game v defined by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 0 0 1 1 -1 3

We obtain

σ mσ
1 mσ

2 mσ
3

1,2,3 0 1 2
1,3,2 0 2 1
2,1,3 1 0 2
2,3,1 4 0 -1
3,1,2 1 2 0
3,2,1 4 -1 0

The core is given by the set of x ∈ R
3 such that

x1 + x2 > 1 ⇔ x3 6 2

x1 + x3 > 1 ⇔ x2 6 2

x2 + x3 > −1 (always true)

The Weber set together with the core are represented on Figure 2.1. We can see
that C(v) ⊆ W (v).

(5,−1,−1) (0, 4,−1)

(0,−1, 4)

C(v)

(1, 0, 2)
(0, 1, 2)

(0, 2, 1)

(1, 2, 0)

(4, 0,−1)

(4,−1, 0)
(3, 0, 0)

W (v)

Figure 2.1: The core and the Weber set

Theorem 2.8. For any game (N, v), C(N, v) ⊆ W (N, v).

The proof is based on the separating hyperplane theorem: let Z ⊆ R
n be

a closed convex set, and let x ∈ R
n \ Z . Then there exists y ∈ R

n such that
〈y, z〉 > 〈y, x〉 for all z ∈ Z , where 〈·〉 denotes a scalar product.
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Proof. Suppose there exists x ∈ C(v) \ W (v). By the separating hyperplane
Theorem, there exists y ∈ R

n such that

〈w, y〉 > 〈x, y〉 (w ∈ W (v)).

Let π ∈ S(N) be a permutation such that yπ(1) > yπ(2) > · · · > yπ(n). In
particular for w = mπ, we find

〈mπ , y〉 > 〈x, y〉. (2.4)

Since x ∈ C(v), we have

〈mπ, y〉 =
n∑

i=1

yπ(i)
(
v({π(1), . . . , π(i)})− v({π(1), . . . , π(i− 1)})

)

= yπ(n)v(N)− yπ(1)v(∅) +
n−1∑

i=1

(yπ(i) − yπ(i+1))v({π(1), . . . , π(i)})

6 yπ(n)x(N) +
n−1∑

i=1

(yπ(i) − yπ(i+1))x({π(1), . . . , π(i)})

=

n∑

i=1

yπ(i)x({π(1), . . . , π(i)})−
n∑

i=2

yπ(i)x({π(1), . . . , π(i− 1)})

=
n∑

i=1

yπ(i)xπ(i) = 〈y, x〉,

which contradicts (2.4).

Theorem 2.9. Let (N, v) be a game. The following propositions are equivalent.

(i) v is convex;

(ii) mσ ∈ C(v) for all σ ∈ S(N);

(iii) C(v) = W (v);

(iv) ext(C(v)) = {mσ | σ ∈ S(N)}.

Proof. (i)⇒(ii) Let us take σ = Id for ease of notation. Let S ⊆ N defined by
S = {i1, . . . , is} (put in numerical order). Since v is convex, we obtain:

v({i1, . . . , ik})−v({i1, . . . , ik−1) 6 v({1, 2, . . . , ik−1, ik}−v({1, 2, . . . , ik−1}) = mσ
ik
.

If we add all these inequalities for k = 1 to s, we obtain

v(S) = v({i1, . . . , is}) 6
s∑

k=1

mσ
ik

=
∑

i∈S

mσ
i ,

which proves that mσ ∈ C(v).
(ii)⇒(i) Let S, T ⊆ N . Let us order the players of N as follows:

N = {i1, . . . , ik
︸ ︷︷ ︸

S∩T

, ik+1, . . . , iℓ
︸ ︷︷ ︸

T\S

, iℓ+1, . . . , is
︸ ︷︷ ︸

S\T

, is+1, . . . , in
︸ ︷︷ ︸

N\(S∪T )

},
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which defines a permutation σ. Since mσ ∈ C(v), we have:

v(S) 6
∑

i∈S

mσ
i =

k∑

j=1

mσ
ij
+

s∑

j=ℓ+1

mσ
ij

= v({i1, . . . , ik}) +
[
v({i1, . . . , iℓ+1})− v({i1, . . . , iℓ})

]

+ · · ·+
[
v({i1, . . . , is})− v({i1, . . . , is−1})

]

= v({i1, . . . , ik})− v({i1, . . . , iℓ}) + v({i1, . . . , is})
= v(S ∩ T )− v(T ) + v(S ∪ T ).

Hence, v is convex.
(iv)⇒(ii) Clear.
(ii)⇒(iii) C(v) ⊆ W (v) is already shown. (ii) implies the converse inclusion.
(iii)⇒(iv) (iii) shows that every extreme point is a marginal vector. It re-

mains to prove that every marginal vector is an extreme point.
This comes from the fact that mσ satisfies at least n equalities in the system

mσ(S) > v(S), corresponding to those S in the maximal chain induced by σ.
This system being triangular, it has a unique solution, and therefore it defines
an extreme point.
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Chapter 3

The Shapley value

3.1 Definition

Definition 3.1. Let (N, v) be a game. The Shapley value of the game is a vector
in R

N given by

Φ(N, v) =
1

n!

∑

σ∈S(N)

mσ (3.1)

where mσ denotes the marginal vector of v for permutation σ.

Some remarks:

(i) The Shapley value is a point-type solution. It always exists. Generally
speaking, a value is a mapping Φ : G(N) → R

N , where G(N) denotes the
set of all games on N .

(ii) Interpretation: the Shapley value is the average of the marginal contri-
butions (or expected value w.r.t. a uniform distribution) over all possible
orders of the players.

(iii) With n = 2, the expression becomes:

Φ1(v) =
1

2

(

v({1}) + v({1, 2})− v({2})
)

= v({1}) + v(N)− v({1})− v({2})
2

Φ2(v) =
1

2

(

v({2}) + v({1, 2})− v({1})
)

= v({2})
︸ ︷︷ ︸

what has each player

+
v(N)− v({1})− v({2})

2
︸ ︷︷ ︸

equal share of the gain/loss of cooperation

(iv) Φi(v) = v({i}) if v is additive.

Example 3.1. We compute the Shapley value for the 3 cities example.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 0 0 90 100 120 220

25
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We have:

order σ mσ
1 mσ

2 mσ
3

1,2,3 0 90 130
1,3,2 0 120 100
2,1,3 90 0 130
2,3,1 100 0 120
3,1,2 100 120 0
3,2,1 100 120 0
Φ(v) 65 75 80

Let us now compute the Shapley value for the glove game.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 0 0 0 1 1 1

We obtain:

order σ mσ
1 mσ

2 mσ
3

1,2,3 0 0 1
1,3,2 0 0 1
2,1,3 0 0 1
2,3,1 0 0 1
3,1,2 1 0 0
3,2,1 0 1 0
Φ(v) 1/6 1/6 2/3

Note that in the glove game, the core is the point {(0, 0, 1)}. Hence, in general
the Shapley value does not lie in the core. Moreover, one can find examples
where the Shapley value is not individually rational (try!). The following result
is easy to obtain.

Theorem 3.1. If (N, v) is convex, then the Shapley value is the (weighted)
barycenter of the core, and therefore lies in it.

Proof. If v is convex, then

C(v) = conv{mσ | σ ∈ S(N)}

and Φ(v) = 1
n!

∑

σ∈S(N) m
σ .

It is possible to considerably simplify the computation of Φ(v), by remark-
ing that for Φi(v), the sum in (3.1) is composed only by terms of the form
v(S ∪ {i})− v(S), and that a given term is repeated a certain number of times
(see figure below).
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∅

S

S ∪ {i}

N

all chains from ∅ to S
hence |S|! chains

all chains from S ∪ {i} to N

hence (n− |S| − 1)! chains

Putting |S| = s, we therefore have (n − s − 1)!s! chains which contain v(S ∪
{i})− v(S). Consequently,

Φi(v) =
∑

S⊆N\{i}

(n− s− 1)!s!

n!
[v(S ∪ {i})− v(S)],

which is the usual formula.
Observe that

(n− s− 1)!s!

n!
=

1

n

1
(
n−1
s

)

(recall that
(
n
k

)
= n!

k!(n−k)! ), which suggests the following probabilistic interpre-

tation: pick at random a coalition S ⊆ N \ {i} in the following way:

(i) choose the size s of S according to a uniform distribution on 0, 1, . . . , n−1.

(ii) then, among the sets of size s, choose one at random in a uniform way.

3.2 Characterization

We introduce the following properties for a value Ψ on G(N).

• Efficiency (E):
∑

i∈N

Ψi(v) = v(N).

• We say that a player i is null if v(S ∪ {i}) = v(S) for every coalition
S ⊆ N \ {i}. In particular, v({i}) = 0 for a null player.

Null player property (N): Ψi(v) = 0 if i is a null player.

• A player i is dummy if v(S ∪ {i}) = v(S) + v({i}) for every coalition
S ⊆ N \ {i}.

Dummy player property (D): Ψi(v) = v({i}) if i is a dummy
player.
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Observe that if Ψ satisfies (D) then it satisfies (N) (why?).

• Two players i, j are symmetric if v(S ∪ {i}) = v(S ∪ {j}) for every S ⊆
N \ {i, j}.

Symmetry (S): Ψi(v) = Ψj(v) if i, j are symmetric.

• Let σ ∈ S(N) be a permutation on N . We define the game vσ on N by

vσ(σ(S)) = v(S) (S ⊆ N)

(i.e., vσ(S) = v(σ−1(S)).

Anonymity (A): for all σ ∈ S(N),

Ψσ(k)(v
σ) = Ψk(v) (k ∈ N).

Observe that if Ψ satisfies (A) then it satisfies (S). (A) means that the num-
bering of the players has no impact on the value for the players.

• Additivity (ADD): Ψ(v + w) = Ψ(v) + Ψ(w) for all v, w ∈ G(N).

Interpretation: (N, v) is played today and (N,w) is played tomorrow. The
player i obtains in total Ψi(v) + Ψi(w). One can consider that the game
v + w has been played.

• Linearity (L): Ψ(v + αw) = Ψ(v) + αΨ(w) for every v, w ∈ G(N) and
α ∈ R.

Exercise 3.1. Prove that the Shapley value satisfies all of the above properties.

Theorem 3.2. (Shapley, 1953) Let Ψ : G(N) → R
N . Then Ψ is the Shapley value

iff it satisfies (E), (N), (S) and (ADD).

Proof. ⇒) see Exercise 3.1.
⇐) We use the decomposition of game on the basis of unanimity games:

v =
∑

T⊆N
T 6=∅

mTuT

By (ADD), Ψ(v) =
∑

T⊆N
T 6=∅

Ψ(mTuT ). It is enough to show that Ψ(αuT ) =

Φ(αuT ) for every α ∈ R, ∅ 6= T ⊆ N . Let α ∈ R, ∅ 6= T ⊆ N to be fixed.
Remark that i ∈ N \ T is a null player for the game αuT :

αuT (S ∪ {i}) = αuT (S) (S ⊆ N \ {i}).

Consequently, by (N)

Ψi(αuT ) = 0 = Φi(αuT ) (i ∈ N \ T ). (3.2)

Let us take distinct i, j ∈ T , supposing |T | > 2. Then i, j are symmetric in the
game uT :

αuT (S ∪ {i}) = αuT (S ∪ {j}) (S ⊆ N \ {i, j})
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Therefore, Ψi(αuT ) = Ψj(αuT ) and Φi(αuT ) = Φj(αuT ). By (E) and (3.2), we
deduce that

Ψi(αuT ) = Φi(αuT ) =
α

|T | (i ∈ T ). (3.3)

Lastly, supposing |T | = 1, say T = {i}, by (E) we obtain

Ψi(αuT ) = Φi(αuT ) = α.

Hence (3.3) is valid also for |T | = 1. Combining (3.2) and (3.3) we deduce that
Φ(αuT ) = Ψ(αuT ).

3.3 Characterization without additivity

Additivity is a usual property in mathematics but not very natural in this con-
text of cooperative game theory. Young has proposed a characterization with-
out (ADD). It is founded on the following property:

Strong Monotonicity (SM): Let v, w be two games on N satisfying

v(S ∪ {i})− v(S) > w(S ∪ {i})− w(S) (S ⊆ N \ {i}).
Then Ψi(v) > Ψi(w).

Obviously, the Shapley value satisfies (SM).

Theorem 3.3. Let Ψ : G(N) → R
N . Then Ψ is the Shapley value iff it satisfies

(E), (S) and (SM).

Proof. Let v ∈ G(N). We define

D(v) = {S ⊆ N | ∃T ⊆ S, v(T ) 6= 0}.
We will show that Ψ(v) = Φ(v) by induction on |D(v)|.

1. If |D(v)| = 0 then v = 0 and therefore by (E) and (S) Ψ(v) = 0 = Φ(v).
2. Suppose the property to be true till |D(v)| = k and consider v such that

|D(v)| = k + 1. Let us call Dm(v) the set of minimal elements of D(v):

Dm(v) = {S ⊆ N | v(S) 6= 0 and T ⊂ S ⇒ v(T ) = 0}.
Let S ∈ Dm(v), define vS on N by vS(T ) = v(S∩T ), T ⊆ N , and put w = v−vS .
Then |D(w)| ≤ k and for all i ∈ N \ S,

w(T ∪ i)− w(T ) = v(T ∪ i)− v(T ) (T ⊆ N \ i)
Indeed, w and v only differ on supersets of S, and if T is a superset of S, so is
T ∪ i, while if T is not a superset of S, neither T ∪ i is a superset of S.

Hence, by (SM), we have Ψi(w) = Ψi(v), and by induction hypothesis,
Ψi(w) = Φi(w) for all i 6∈ S. By (SM) applied to Φ, we also have Φi(w) = Φi(v),
and therefore Ψi(v) = Φi(v) for all i ∈ N \ S.

In summary we have shown that Ψi(v) = Φi(v) for all i ∈ N \ S0, with

S0 =
⋂

{S | S ∈ Dm(v)}.

We have v(T ) = 0 if S0 \ T 6= ∅ (indeed, T 6⊇ S0 implies T 6⊇ S, for all
S ∈ Dm(v), which implies T 6∈ D(v)). Hence, if i, j ∈ S0, they are symmetric
(since v(T ∪ i) = v(T ∪ j) = 0), hence by (S) we obtain Ψi(v) = Ψj(v) and
Φi(v) = Φj(v) for all i, j ∈ S0. Consequently, by (E) we obtain Ψi(v) = Φi(v)
for all i ∈ S0.
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3.4 Potential

We denote by G =
⋃

N⊆N

|N |<∞

G(N) the set of all games with a finite number of

players.

Definition 3.2. (Hart and Mas-Colell, 1989) A potential is a function P : G → R

satisfying:

(i) P (∅, v) = 0

(ii)
∑

i∈N DiP (N, v) = v(N), for all (N, v) ∈ G,

with DiP (N, v) = P (N, v) − P (N \ i, v), where v in the last term is with some
abuse of notation the restriction of v to N \ i.

The gradient of P is the vector (DiP (N, v))i∈N . It is an efficient vector.

Theorem 3.4. There exists a unique potential P : G → R. P (N, v) is determined
by the subgames (S, v), S ⊆ N , by applying (ii) recursively.

Proof. We have for |N | = 1, P ({i}, v) = v({i}). For |N | = 2, we obtain:

P ({i, j}, v) = 1

2

(

v({i, j}) + v({i}) + v({j})
)

Finally:

P (N, v) =
v(N) +

∑

i∈N P (N \ i, v)
|N |

Theorem 3.5. For every game (N, v) ∈ G, for all i ∈ N , DiP (N, v) = Φi(N, v)
(Shapley value).

Proof. Let (N, v) ∈ G and express it in the basis of unanimity games:

v =
∑

∅ 6=T⊆N

αTuT .

Let us define a function P ∗ : G → R by

P ∗(N, v) =
∑

∅ 6=T⊆N

αT
|T |

and P ∗(∅, v) = 0. Take i ∈ N . If |N | = 1, P ∗(N, v) = DiP ∗(N, v) = v(N). If
|N | > 2, then

P ∗(N \ i, v) =
∑

∅ 6=T⊆N\i

αT
|T |

therefore
∑

i∈N

DiP ∗(N, v) =
∑

i∈N

∑

T∋i

αT
|T | =

∑

∅ 6=T⊆N

∑

i∈T

αT
|T | =

∑

∅ 6=T⊆N

αT = v(N).

Hence P ∗ is a potential, and by uniqueness, P ∗ = P . Furthermore, we recog-
nize in DiP ∗(N, v) =

∑

T∋i
αT

|T | the Shapley value.
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Proposition 3.1. For any game (N, v) ∈ G,

P (N, v) =
∑

S⊆N

(s− 1)!(n− s)!

n!
v(S).

(proof is left as an exercise)

3.5 Reduced games

The basic idea is the following: In a game (N, v), consider a coalition S 6= N
and the game “induced” by S (called reduced game). If the players apply the
same solution concept to N or S, their benefit should not change. This property
is called “consistency”.

Definition 3.3. Let Ψ be a value defined on G and let (N, v) ∈ G. For every
U ⊆ N , U 6= ∅, the reduced game (N \ U, vU,Ψ) is defined by

vU,Ψ(S) =

{

v(S ∪ U)−∑

∈U Ψk(S ∪ U, v), S ⊆ N \ U, S 6= ∅

0, S = ∅.

Definition 3.4. A value Ψ is consistent if for every game (N, v), every U ⊆ N ,
U 6= ∅,

Ψi(N \ U, vU,ψ) = Ψi(N, v) (i ∈ N \ U).

Lemma 3.1. Let (N, v) ∈ G. Suppose that Q : 2N → R satisfies

∑

i∈S

(Q(S)−Q(S \ i)) = v(S) (S ⊆ N,S 6= ∅)

Then for all S ⊆ N ,
Q(S) = P (S, v) +Q(∅). (3.4)

Proof. By induction on |S|. For |S| = 0, the property is clearly true. Let T ,
|T | > 0, and suppose that (3.4) is true for all S, |S| < |T |. We obtain:

Q(T ) =
1

|T |
(

v(T ) +
∑

i∈T

Q(T \ i)
)

=
1

|T |
(

v(T ) + |T |Q(∅) +
∑

i∈T

P (T \ i, v)
)

Q(∅) +
1

|T |
(

v(T ) +
∑

i∈T

P (T \ i, v)
)

︸ ︷︷ ︸

P (T,v)

.

Lemma 3.2. The Shapley value is consistent.

Proof. Let (N, v) ∈ G, U ⊆ N , U 6= ∅. We have to show that

Φi(N \ U, vU,Φ) = Φi(N, v) (i ∈ N \ U).
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We have

vU,Φ(S) = v(S ∪ U)−
∑

i∈U

Φi(S ∪ U, v) =
∑

i∈S

Φi(S ∪ U), v)

=
∑

i∈S

[P (S ∪ U, v)− P ((S ∪ U) \ i, v)]
︸ ︷︷ ︸

DiP (S∪U,v)

Let us define Q(S) = P (S ∪ U, v) for all S ⊆ N \ U . By the preceding lemma
applied to (N \ U, vU,Φ), we obtain:

Q(S)
︸ ︷︷ ︸

P (S∪U,v)

= P (S, vU,Φ) + Q(∅)
︸ ︷︷ ︸

P (U,v)

(S ⊆ N \ U)

Then

Φi(N \ U, vU,Φ) = P (N \ U, vU,Φ)− P ((N \ U) \ i, vU,Φ)
= P (N, v)− P (N \ i, v) = Φi(N, v).

Definition 3.5. Ψ is standard for 2-players games if for all ({i, j}, v),

Ψi({i, j}, v) =
1

2

(
v({i, j}) + v({i})− v({j})

Ψj({i, j}, v) =
1

2

(
v({i, j}) + v({j})− v({i})

Theorem 3.6. Let Ψ be a value on G. Then Ψ is the Shapley value if and only if
Ψ is consistent and standard for 2-players games.

3.6 The Banzhaf value

There are other values than the Shapley value. One of the best known among
these is the Banzhaf value. It is often used in voting games, under the name of
Banzhaf (power) index.

In voting games (i.e., simple games), a value is usually called a power index.
For example, the Shapley value is called the Shapley-Shubik index. A central
notion in voting is the notion of swing. A swing for player i is a coalition S
such that i ∈ S, S is winning and S \ {i} is losing. In other words, i is a pivot
player or key player in S. We denote by θi the number of swings for player i.
The Banzahf index (or normalized Banzhaf-Coleman index) is defined as follows:

βi(N, v) =
θi

∑

j∈N θj
(i ∈ N).

Observe that θi =
∑

S⊆N\i(v(S ∪ i)− v(S)) for a simple game. This yields the

extension of the Banzhaf index to any TU-game, called the Banzhaf value:

Ψi(N, v) =
1

2n−1

∑

S⊆N\i

(v(S ∪ i)− v(S)) (i ∈ N).
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It is easy to check that the Banzahf value satisfies (N), (D), (S), (A), (SM),
(ADD), (L), which implies that (E) cannot be satisfied (as this would charac-
terize the Shapley value). While there is no inconvenience that a power index
does not satisfy (E), as a value is a sharing of the total benefit v(N), it is rather
inconvenient that (E) is not satisfied by the Banzhaf value. This is why the
normalized Banzhaf value has been introduced:

Ψ̃i(N, v) =
Ψi(v)

∑

j∈N Ψj(v)
(i ∈ N).

The normalized Banzhaf value is efficient, but loses the additivity (and hence
linearity) property.
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Chapter 4

The nucleolus

Solution concepts seen so far are not completely satisfactory:

• The core can be very large, or empty.

• The Shapley value is not always in the core.

The nucleolus (Schmeidler, 1969) is unique and always exists. Moreover, it
always belongs to the core when it is nonempty.

4.1 Definition

Let (N, v) be a game, and X ⊆ R
N a set of payment vectors. For all x ∈ X ,

S ⊆ N , S 6= ∅, we define the excess of S at x by:

e(S, x) = v(S)− x(S)

(regret, dissatisfaction of coalition S w.r.t. payment x). We define the vector
θ(x) of ordered excesses at x:

θ(x) = (e(S1, x), . . . , e(S2n−1, x))

ordered such that e(S1, x) > e(S2, x) > · · · > e(S2n−1, x). The nucleolus of v
w.r.t. X is the set

N (N, v,X) = {x ∈ X | θ(y) <lex θ(x) ∀y ∈ X},

with <lex the lexicographic order.
Interpretation: we look for payment vectors which minimize the maximum

excess.

Definition 4.1. (i) The nucleolus of v is the nucleolus w.r.t. X = I(N, v), the
set of imputations. Notation: ν(N, v).

(ii) The prenucleolus of v is the nucleolus w.r.t. X = PI(N, v), the set of preim-
putations. Notation: ν∗(N, v).

Some remarks:

35
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(i) The nucleolus may not exist since I(N, v) can be empty, but the prenucle-
olus always exists.

(ii) If C(N, v) 6= ∅, every x ∈ C(N, v) yields θ(x) 6 0, and every x outside the
core yields θ(x) with at least one positive component. Hence the search
for a minimal θ(x) can be restricted to elements of the core. Therefore,
the nucleolus and the prenucleolus coincide.

(iii) For the same reason, if C(N, v) 6= ∅, the nucleolus lies in the core.

4.2 Example

Consider the following game:

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 4 4 4 8 12 16 24

The core is nonempty since (8, 8, 8) ∈ C(v). This gives for the excesses:

S {1} {2} {3} {1, 2} {1, 3} {2, 3}
e(S, (8, 8, 8)) −4 −4 −4 −8 −4 0

The maximum excess is 0. it can be easily diminished by giving more to players
2 and 3, to the detriment of player 1. For example:

S {1} {2} {3} {1, 2} {1, 3} {2, 3}
e(S, (6, 9, 9)) −2 −5 −5 −7 −3 −2

The maximum excess is −2, and it cannot be further diminished: increasing x2

or x3 obliges to diminish x1, which would have as effect to increase e({1}, x).
Let us remark that {{1}, {2, 3}} (red) is a balanced collection.

On the other hand, it is possible to minimize the second greatest excess −3,
by giving more to players 1,3 to the detriment of player 2. However, x1 = 6
cannot be further increased.

S {1} {2} {3} {1, 2} {1, 3} {2, 3}
e(S, (6, 8, 10)) −2 −4 −6 −6 −4 −2

It is not possible to further diminish the second excess −4 (because we should
diminish x2 and therefore e({2}, x) > −4), nor the third one −6 (idem with x3).

Finally, (6, 8, 10) is the nucleolus and the prenucleolus of the game. Remark
that the collections {{1}, {2, 3}, {2}, {1, 3}} (red and blue) and
{{1}, {2, 3}, {2}, {1, 3}, {3}, {1, 2}} (red, blue, green) are balanced.

Generally speaking, the computation of the nucleolus is not simple.

4.3 Existence and uniqueness

Theorem 4.1. Let X ⊆ R
N , compact and nonempty. Then N (N, v,X) 6= ∅.
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Proof. The mapping e(S, ·) is continuous, and therefore θ(·) also. Let us define
X0 := X , and

Xt := {x ∈ Xt−1 | θt(y) > θt(x), ∀y ∈ Xt−1} (t = 1, 2, . . . , 2n − 1).

By the Weierstraß theorem1, Xt is nonempty, and also compact2, for every t.
As N (N, v,X) = X2n−1, the result is shown.

Theorem 4.2. Let X ⊆ R
N , compact, convex and nonempty. Then N (N, v,X)

is a singleton for all games (N, v).

The proof is based on the following lemma:

Lemma 4.1. Let X be convex, x, y ∈ X , 0 6 α 6 1. Then

αθ(x) + (1 − α)θ(y) <lex θ(αx + (1− α)y).

Proof. (of the Lemma) We order the sets S1, . . . , S2n−1 in such a way that

θ(αx + (1− α)y) = (e(S1, αx+ (1 − α)y), . . . , e(S2n−1, αx+ (1− α)y))

The right hand-side is equal to αa+ (1 − α)b, with

a = (e(S1, x), . . . , e(S2n−1, x)), b = (e(S1, y), . . . , e(S2n−1, y))

Since θ(x) <lex a and θ(y) <lex b, we obtain:

αθ(x) + (1− α)θ(y) <lex αa+ (1 − α)b = θ(αx+ (1 − α)y)

Proof. (of the Theorem) By Theorem 4.1, the nucleolus is nonempty. Let x, y ∈
N (N, v,X) and 0 < α < 1. Then θ(x) = θ(y) and by the Lemma

θ(αx + (1− α)y) 4lex αθ(x) + (1 − α)θ(y) = θ(x).

As x realizes the minimum of the θ(·)’s, it follows that

θ(αx+ (1 − α)y) = θ(x) = θ(y).

With the notation of the Lemma, we have then

θ(x) = θ(y) = αa+ (1 − α)b.

As θ(x) <lex a, θ(y) <lex b, we obtain a = θ(x), b = θ(y). Since a and b are
ordered in the same way, so are θ(x) and θ(y), and finally x = y.

As a consequence of Theorem 4.2, the nucleolus of any game (N, v) with a
nonempty set of imputations exists and is unique, since I(N, v) is compact and
convex. However, the theorem is of no help for proving the existence of the
prenucleolus since PI(v) is not compact. The result nevertheless holds.

1Weierstraß’s theorem: A real-valued continuous function on a compact set attains its maxi-
mum and minimum. In R

n, compact sets are the closed and bounded sets.
2It is bounded as a subset of a bounded set, and it is closed as the inverse image of a closed set

by a continuous function.
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Proposition 4.1. The prenucleolus exists and is a singleton for any game (N, v).

Proof. Let y ∈ PI(v) and µ := maxS⊆N e(S, y). Let us define

X = {x ∈ PI(v) | e(S, x) 6 µ, ∀S ⊆ N}.
Then X is nonempty, convex and compact. By application of Theorem 4.2, it
follows that N (N, v,X) is a singleton, which coincides with the prenucleolus
ν∗(N, v).

4.4 The Kohlberg criterion

Nota: all the presentation is done with the prenucleolus. A similar result exists
for the nucleolus.

A side payment is a vector y ∈ R
N such that y(N) = 0. For a game (N, v),

α ∈ R and x ∈ R
N , we define

D(α, x, v) = {S ∈ 2N \ {∅} | e(S, x) > α}.
Theorem 4.3. Let (N, v) be a game and x ∈ PI(v). The following propositions
are equivalent:

(i) x = ν∗(N, v)

(ii) For all α such that D(α, x, v) 6= ∅, for all side payment y ∈ R
N such that

y(S) > 0 for all S ∈ D(α, x, v), we have

y(S) = 0, ∀S ∈ D(α, x, v).

Proof. (i)⇒(ii) Let x, α, y satisfy (ii), x = ν∗(N, v). Let us define zǫ = x + ǫy
with ǫ > 0. We have zǫ ∈ PI(N, v). Let us choose ǫ∗ > 0 such that for all
S ∈ D(α, x, v), for all T 6∈ D(α, x, v), T 6= ∅:

e(S, zǫ∗) > e(T, zǫ∗). (4.1)

Then, for all S ∈ D(α, x, v), we have

e(S, zǫ∗) = v(S)− (x(S) + ǫ∗y(S))

= e(S, x)− ǫ∗y(S) 6 e(S, x). (4.2)

Suppose there exists S ∈ D(α, x, v) such that y(S) > 0. Then by (4.1) and (4.2),
we would have θ(x) <lex θ(zǫ∗), which is impossible.

(ii)⇒(i) Let x ∈ P (N, v) satisfying (ii), and z = ν∗(N, v). Let us denote by
α1 > · · · > αp the excesses e(S, x) for all S ∈ 2N \ {∅}. Put y = z − x, i.e., y
is a side payment. Since θ(x) <lex θ(z), we have e(S, x) = α1 > e(S, z) for all
S ∈ D(α1, x, v), and thus

e(S, x)− e(S, z) = (z − x)(S) = y(S) > 0.

By condition (ii), we deduce that y(S) = 0 for all S ∈ D(α1, x, v). Suppose now
that y(S) = 0 for all S ∈ D(αt, x, v) for some t < p. Since θ(x) <lex θ(z), we
have

e(S, x) = αt+1 > e(S, z) (S ∈ D(αt+1, x, v) \ D(αt, x, v)).

Hence y(S) > 0, and by (ii), y(S) = 0 for all S ∈ D(αt+1, x, v). It follows that
y(S) = 0 for all S 6= ∅, and thus x = z.
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Theorem 4.4. (Kohlberg) Let (N, v) be a game and x ∈ PI(N, v). T.f.a.e.:

(i) x = ν∗(N, v)

(ii) For all α, D(α, x, v) 6= ∅ implies that D(α, x, v) is a balanced collection.

Proof. (ii)⇒(i) Let x satisfy (ii), α ∈ R s.t. D(α, x, v) 6= ∅, and a side payment
y with y(S) > 0 for all S ∈ D(α, x, v). As D(α, x, v) is balanced, there exists
λS > 0, S ∈ D(α, x, v) such that

∑

S∈D(α,x,v)

λS1S = 1N .

Multiplying by y on each side, we obtain

∑

S∈D(α,x,v)

λSy(S) = y(N) = 0

which implies that y(S) = 0 for all S ∈ D(α, x, v). Hence, by Theorem 4.3, we
have x = ν∗(N, v).

(i)⇒(ii) Let α ∈ R such that D(α, x, v) 6= ∅ for x = ν∗(N, v). Consider the
linear program

Max
∑

S∈D(α,x,v)

y(S)

s.t. y(S) > 0, ∀S ∈ D(α, x, v)

y(N) = 0

This program has a feasible solution (y = 0), and by Theorem 4.3, the optimal
value of the objective function is 0. Therefore, by the duality theorem, its dual
program has also a feasible solution:

Min 0

s.t.
∑

S∈D(α,x,v),S∋i

−λS + λN =
∑

S∈D(α,x,v),S∋i

1, i ∈ N

λS > 0, S ∈ D(α, x, v)

λN ∈ R.

Hence, for this solution, we have, for every i ∈ N ,

λN =
∑

S∈D(α,x,v)
S∋i

(1 + λS)
︸ ︷︷ ︸

>0

> 0.

By putting λ′
S = 1+λS

λN
, we see that the collection D(α, x, v) is balanced.

4.5 Computation of the nucleolus

Let us compute the nucleolus N (N, v,X) for a given X ⊆ R
N which is a convex

polyhedron.
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We start by solving the following LP in variables α, x:

Min α

s.t. x(S) + α > v(S), S ⊆ N,S 6= ∅

x ∈ X.

Let α1 be the optimal value, and X1 ⊆ X the set of feasible points where the
minimum is attained. If |X1| = 1, it is the nucleolus. Otherwise, let B1 = {S ⊆
N | e(S, x) = α1, x ∈ X1}. According to the Kohlberg criterion (Theorem 4.4),
B1 is a balanced collection, since for x ∈ X1, in particular for the nucleolus,
D(α, x, v) = B1.

Then, we solve the following LP:

Min α

s.t. x(S) + α > v(S), S ∈ 2N \ B1, S 6= ∅

x ∈ X1.

Let α2 be the optimal value and X2 the set of points where the minimum is
attained. If |X2| = 1, it is the nucleolus, otherwise let B2 = {S ⊆ N | e(S, x) =
α2, x ∈ X2}. Then B1 ∪ B2 is a balanced collection, since D(α2, x, v) = B1 ∪ B2,
and so on.

Example 4.1. Let N = {1, 2, 3, 4}, the game defined by (omitting braces and
commas)

v(N) = 100

v(123) = 95, v(124) = 85, v(134) = 80, v(234) = 55

v({i, j}) = 50 for all i, j

v({i}) = 0 for all i.

and consider X = PI(N, v). Applying the above procedure, we find:

Min α

s.t.







x1 + x2 + x3 + α > 95
x1 + x2 + x4 + α > 85
x1 + x3 + x4 + α > 80

x2 + x3 + x4 + α > 55
xi + xj + α > 50

xi + α > 0
x1 + x2 + x3 + x4 = 100

The solution is α1 = 10, and the tight constraints are the 2 first ones, plus
x3 + x4 + α = 50, which yields B1 = {123, 124, 34} (note that it is a balanced
collection). Using the system of the 3 tight constraints, we deduce that X1 is
given by







x1 + x2 = 60
x1 > 30

x2 > 25
x3 = 25
x4 = 15
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As X1 is not a singleton, we process one step further. The new LP is:

Min α

s.t.







x1 + x3 + x4 + α > 80
x2 + x3 + x4 + α > 55

x1 + x3 + α > 50
x1 + x4 + α > 50

x2 + x3 + α > 50
x2 + x4 + α > 50

xi + α > 0
x ∈ X1

After simplification, the program reduces to

Min α

s.t.







x1 + α > 40
x2 + α > 35
x1 + x2 = 60
x1 > 30
x2 > 25

The solution is α2 = 7.5, with x1 = 32.5 and x2 = 27.5, which is the unique
solution. Hence X2 is a singleton and we find B2 = {134, 24}. One can check
that B1 ∪ B2 = {123, 124, 134, 24, 34} is a balanced collection.
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Chapter 5

Bargaining

5.1 Example and notation

The general situation is the following: two players must share one unit of a
divisible good (e.g., a cake). If they reach an agreement (α, β), α, β > 0, α+β 6

1, they divide the good according to (α, β). Otherwise, they receive nothing (or
some predefined amount). We suppose that each player has a utility function
representing his preference.

Definition 5.1. A bargaining problem with 2 players is a pair (S, d), with

(i) S ⊆ R
2 is compact (closed and bounded), convex, and nonempty.

(ii) d = (d1, d2) ∈ S is such that there exists x ∈ S with x1 > d1 and x2 > d2,
and is called the disagreement point.

Interpretation: If the 2 players reach an agreement x ∈ S, they receive the
respective utilities x1, x2, otherwise they receive d1, d2, respectively.

Example 5.1. Suppose that the utility functions are

u1(α) = α, u2(α) =
√
α (α ∈ [0, 1]).

Then an efficient sharing (α, 1−α) leads to a utility vector (α,
√
1− α). If in case

of disagreeement the players receive nothing, the corresponding bargaining
problem is defined by

S = {(x1, x2) ∈ R
2 | 0 6 x1, x2 6 1, x2 6

√
1− x1}, d = (0, 0).

Let us denote by B the set of all bargaining problems.

Definition 5.2. A solution of a bargaining problem is a mapping

F : B → R
2

(S, d) 7→ F (S, d) ∈ S

43
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5.2 The Nash solution

Nash imposes to F the following 4 properties:

(i) Weak Pareto optimality (WPO):F (S, d) belongs to W (S) for every (S, d) ∈
B, with

W (S) = {x ∈ S | ∀y ∈ R
2, y1 > x1 and y2 > x2 imply y 6∈ S}

the set of weakly Pareto optimal solutions.

(ii) We say that (S, d) is a symmetric bargaining problem if d1 = d2 and S is
symmetric w.r.t. the main diagonal, i.e., (x1, x2) ∈ S iff (x2, x1) ∈ S.

Symmetry (S): F1(S, d) = F2(S, d) for all symmetric (S, d).

(iii) Scale covariance (SC): for every (S, d) ∈ B, for every a = (a1, a2), b =
(b1, b2) ∈ R

2 with a1, a2 > 0

F (aS + b, ad+ b) = aF (S, d) + b

where aS + b = {(a1x1 + b1, a2x2 + b2) | (x1, x2) ∈ S}, and aF (S, d) =
(a1F1(S, d), a2F2(S, d)).

(iv) Independence of Irrelevant Alternatives (IIA): For every (S, d), (T, d) ∈
B with T ⊆ S and F (S, d) ∈ T , we have F (T, d) = F (S, d).

Definition 5.3. The Nash solution N : B → R
2 is defined by

N(S, d) = argmax{(x1 − d1)(x2 − d2) | x ∈ S, x > d}.

It can be shown that the Nash solution is well defined (exists and is unique).

For the bargaining problem in Example 5.1, we find F (S, d) = (2/3,
√

1/3),
since it is the solution of max06α61 α

√
1− α.

Theorem 5.1. (Nash, 1950) F = N iff F satisfies (WPO), (S), (SC) and (IIA).

5.3 The solution of Raiffa-Kalai-Smorodinsky

Kalai and Smorodinsky have replaced the somewhat controversial axiom IIA
of Nash by a property called individual monotonicity.

We define the utopia point of (S, d) ∈ B by

u(S, d) = (max{x1 | x ∈ S, x > d},max{x2 | x ∈ S, x > d}).

Individual Monotonicity (IM): For every (S, d) ∈ B, T ⊇ S, such
that ui(S, d) = ui(T, d) for some i ∈ {1, 2},

Fj(S, d) 6 Fj(T, d) for j 6= i.

The Raiffa-Kalai-Smorodinsky solution R(S, d) is defined as the intersection of the
frontier of S with the segment (d, u).

Theorem 5.2. F = R iff F satisfies (WPO), (S), (SC) and (IM).
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5.4 The egalitarian solution

Monotonicity (M): F (S, d) 6 F (T, d) for all (S, d) ∈ B and T ⊇ S.

We say that (S, d) is comprehensive if for every z, x ∈ S, x 6 y 6 z implies y ∈ S.
Let us denote by Bc the subclass of comprehensive bargaining problems.

The egalitarian solution E : Bc → R
2 is defined by

E(S, d) ∈ W (S) is such that E1(S, d)− d1 = E2(S, d)− d2,

i.e., the excess w.r.t. the disagreement point is equal for the two players. We
introduce the following property:

Translation Covariance (TC): For every (S, d) ∈ Bc and e ∈ R
2,

F (S + e, d+ e) = F (S, d) + e.

Theorem 5.3. Let F : Bc → R
2. Then F = E iff F satisfies (WPO), (M), (S) and

(TC).
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Chapter 6

Bankruptcy problems

6.1 Bankruptcy problems and division rules

Consider an estate E > 0, to be shared among a set of agents (claimants) N .
Claimant i has demand ci > 0, and we set c = (c1, . . . , cn).

We call (c, E) a bankruptcy problem if
∑

i∈N ci > E. We denote by CN the set
of all bankruptcy problems.

Other interpretation: A bankruptcy problem can be seen as a taxation prob-
lem. Agents in N are the tax payers, ci is the income of agent i, and E is the
cost of some common project.

A division rule R is a mapping (c, E) 7→ R(c, E) = x ∈ R
N such that

∑

i∈N xi = E and 0 6 x 6 c.

6.2 Main division rules

We start by giving two famous examples of bankruptcy problems from the
Talmud.

The contested garment. Two men contest the property of a garment,
whose value is 200. The first man claims half of it (100), and the second
one claims the totality of it (200). The Talmud recommends the solution
(50, 150).

The estate division problem. A man has 3 wives, and the marriage
contract stipulates that at his death, they will receive 100, 200 and 300,
respectively. The man dies, and it is discovered that his estate is only 100.
The Talmud recommends as solution (331/3, 331/3, 331/3). If the estate is
300, it recommends (50, 100, 150), and if the estate is 200, it recommends
(50, 75, 75).

N.B.: None of the following rules, except the Talmud rule, is able to
explain the figures in both examples.

47
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A simple solution for the contested garment problem. Let us call i and j the
two claimants. i claims ci means that E − ci is conceded to j if this amounts is
nonnegative, otherwise it is 0 (and similarly for j). Hence, each of them takes
what the other one is conceding to him, and the rest is divided in two equal
parts. This leads to:

“Concede and Divide” rule (CD), for n = 2 agents.

CDi(c, E) = max(E − cj , 0)
︸ ︷︷ ︸

conceded part

+
1

2

(

E −
∑

k

max(E − ck, 0)
)

︸ ︷︷ ︸

contested part

This rule is able to explain the contested garment problem, but seems difficult
to generalize for more than 2 players.

The Proportional Rule (P).

P(c, E) = λc, with λ such that
∑

i

λci = E.

Variant: ci is replaced by min(ci, E) (truncated proportional rule).

Constrained Equal Awards Rule (CEA). It gives to everybody the same amount,
except if this exceeds the claim.

CEAi(c, E) = min(ci, λ), with λ such that
∑

j

min(cj , λ) = E.

Piniles Rule (Piniles, 1861).

Πi(c, E) =

{

CEAi
(
c
2 , E

)
, if

∑

j

cj
2 > E

ci
2 +CEAi

(
c
2 , E −∑

j

cj
2

)

, otherwise.

This rule is able to explain the figures for the estate division problem, but not
of the contested garment problem.

Constrained Egalitarian Rule (CE).

CEi(c, E) =

{

min
(
ci
2 , λ

)
, if

∑

j

cj
2 > E

max
(
ci
2 ,min(ci, λ)

)
, otherwise

with λ such that
∑

i CEi(c, E) = E.

Constrained Equal Losses Rule (CEL).

CELi(c, E) = max(0, ci − λ
︸ ︷︷ ︸

loss = what he does not receive

), with λ such that
∑

j

max(0, cj−λ) = E.

This yields the correct figures for the contested garment problem.
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The Talmud Rule (T).

Ti(c, E) =

{

min
(
ci
2 , λ

)
, with λ s.t.

∑

jmin
( cj

2 , λ
)
= E, if

∑

j

cj
2 > E

ci −min
(
ci
2 , λ

)
, with λ s.t.

∑

j

(

cj −min
( cj

2 , λ
) )

= E, otherwise.

Summary:

(i) If
∑

j

cj
2 = E, everybody receives ci

2 .

(ii) If
∑

j

cj
2 > E, one applies CEA with c

2 .

(iii) If
∑

j

cj
2 6 E, one applies CEL with c

2 .

Algorithmic definition, supposing c1 6 c2 6 · · · 6 cn:

(i) We make E vary from 0 to
∑

j

cj
2 .

• We make E increase from 0 till each agent receives c1
2 . Then agent 1

does not receive anything more for a while.

• We continue to make E increase till each agent (except the 1st one)
receives c2

2 . Then STOP for agent 2.

• . . . and so on till arriving at E =
∑

j

cj
2 , in which case every agent i

will have received ci
2 .

(ii) We make E vary from
∑

j cj to
∑

j

cj
2 .

• If E =
∑

j cj , then every agent i receives ci.

• The diminution of E is shared equally among the agents till every
agent has a loss equal to c1

2 . Then agent 1 has no more loss.

• We continue to make E decrease while sharing equally the losses
among agents (except agent 1), till the losses are equal to c2

2 .

• . . . and so on till arriving at E =
∑

j

cj
2 .

We illustrate the method on both examples.

100 150 200 300

50

100

150

200

E

Figure 6.1: The Talmud rule applied to the contested garment problem.
∑

j cj/2 = 150. Blue solid line: x1, red solid line: x2
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150 250 300 350 450 600

50

100

150

200

250

300

E

Figure 6.2: The Talmud rule applied to the estate division problem.
∑

j cj/2 =
300. Blue solid line: x1, red solid line: x2, green solid line: x3

The Random Arrival Rule (RA).

RAi(c, E) =
1

n!

∑

σ∈S(N)

min
{

ci,max
{

E −
∑

j∈N
σ(j)<σ(i)

cj , 0
}}

.

6.3 Relations with solutions of cooperative games

6.3.1 Bargaining solutions

To each bankruptcy problem (c, E), we assign a bargaining problem whose set
of feasible solutions is

B(c, E) = {x ∈ R
N |

∑

i

xi 6 E, 0 6 x 6 c}

and disagreement point is 0. We say that a division rule corresponds to a bar-
gaining solution if the recommended vector is the same.

Theorem 6.1. (Dagan and Volij 1993) The following correspondences exist:

(i) CEA (Constrained Equal Awards) with the Nash solution

(ii) P (Proportional) with the weighted Nash solution, defined by
maxx>d

∏

i(xi − di)
wi , taking wi = ci for all i.

(iii) The truncated proportional rule with Kalai-Smorodinsky.
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6.3.2 Solutions of coalitional games

We associate to a bankruptcy problem (c, E) the TU-game

v(c, E)(S) = max
(

E −
∑

i∈N\S

ci

︸ ︷︷ ︸

what remains after agents inN \ S are served

, 0
)

(S ⊆ N,S 6= ∅)

Properties of v(c, E):

(i) v(c, E) is convex

(ii) The core of v(c, E) is the set of all possible sharing vectors x, i.e., satisfy-
ing x(N) = E and 0 6 x 6 c. Indeed, as for the second condition, for any
core element x:

• xi > v(c, E)({i}) > 0.

• Supposing E >
∑

i∈N\S ci, we have

x(S) > E − c(N \ S) ⇔
E − x(N \ S) > E − c(N \ S) ⇔

x(N \ S) 6 c(N \ S)

which yields for S = N \ i: xi 6 ci.

Case n = 2. The standard solution xi = v(c, E)({i}) + 1
2

(

v(c, E)({i, j}) −
v(c, E)({i})− v(c, E)({j})

)

yields

xi = max(E − cj , 0) +
1

2

(

E −
∑

k

max(E − ck, 0)
)

which is exactly the “Concede and Divide” rule.

General case.

Theorem 6.2. The following correspondences exist:

(i) The Random Arrival rule with the Shapley value

(ii) The Talmud rule with the prenucleolus

(iii) The Constrained Equal Awards rule with the Dutta-Ray solution.

The Dutta-Ray solution is the core element which is Lorenz-maximal. We
say that x dominates y in the Lorenz sense if, letting xσ(1) 6 · · · 6 xσ(n) and
yτ(1) 6 · · · 6 yτ(n), we have

j
∑

i=1

xσ(i) >

j
∑

i=1

yτ(i) (j = 1, . . . , n)

and x(N) = y(N).
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